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Abstract

We introduce cause identification, a new
problem involving classification of in-
cident reports in the aviation domain.
Specifically, given a set of pre-defined
causes, a cause identification system seeks
to identify all and only those causes that
can explain why the aviation incident de-
scribed in a given report occurred. The dif-
ficulty of cause identification stems in part
from the fact that it is a multi-class, multi-
label categorization task, and in part from
the skewness of the class distributions and
the scarcity of annotated reports. To im-
prove the performance of a cause identi-
fication system for the minority classes,
we present a bootstrapping algorithm that
automatically augments a training set by
learning from a small amount of labeled
data and a large amount of unlabeled data.
Experimental results show that our algo-
rithm yields a relative error reduction of
6.3% in F-measure for the minority classes
in comparison to a baseline that learns
solely from the labeled data.

Introduction
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they tend to be more similar to each other with
respect to word usage, thus making the classes
less easily separable. This is one of the reasons
why topic-based classification, even with multiple
classes as in the 20 Newsgroups dafasends to
be easier than review classification, where reviews
from the same domain are to be classified accord-
ing to the sentiment expresged

In this paper, we introduce a new text classifi-
cation problem involving the Aviation Safety Re-
porting System (ASRS) that can be viewed as a
difficult task along each of the five dimensions dis-
cussed above. Established in 1967, ASRS collects
voluntarily submitted reports about aviation safety
incidents written by flight crews, attendants, con-
trollers, and other related parties. These incident
reports are made publicly available to researchers
for automatic analysis, with the ultimate goal of
improving the aviation safety situation. One cen-
tral task in the automatic analysis of these reports
is cause identificatiopor the identification ofvhy
an incident happened. Aviation safety experts at
NASA have identified 14 causes (shaping fac-
torsin NASA terminology) that could explain why
an incident occurred. Hence, cause identification
can be naturally recast as a text classification task:
given an incident report, determine which of a set

Automatic text classification is one of the most im-0f 14 shapers contributed to the occurrence of the
portant applications in natural language processncident described in the report.

ing (NLP). The difficulty of a text classification

As mentioned above, cause identification is

task depends on various factors, but typically, theconsidered challenging along each of the five

task can be difficult if (1the amount of labeled aforementioned dimensions.

First, there is a

data available for learning the task is small; (2) scarcity of incident reports labeled with the
it involves multiple classes; (3) it involvasulti-
label categorizationwhere more than one label there has been very little work on this task. While
can be assigned to each document; (4)dlass
distributions are skewed, with some categoriesmethod for labeling a report with shapers (Posse
significantly outnumbering the others; and (5)the

documents belong to ttemme domaie.g., movie

review classification). In particular, when the doc-

shapers. This can be attributed to the fact that

the NASA researchers have applied a heuristic

http://kdd.ics.uci.edu/databases/20newsgroups/
20f course, the fact that sentiment classification requires
a deeper understanding of a text also makes it more difficult

uments to be classified are from the same domainhan topic-based text classification (Pang et al., 2002).



et al., 2005), the method was evaluated on onlgideration, and (2) augment the labeled data by us-
20 manually labeled reports, which are not madeng the resulting words to annotate those unlabeled
publicly available. Second, the fact that this isreports that can be confidently labeled. We evalu-
a l4-class classification problem makes it moreate our approach using cross-validation on 1,333
challenging than a binary classification problem.manually annotated reports. In comparison to a
Third, a report can be labeled with more than onesupervised baseline approach where a classifier is
category, as several shapers can contribute to theequired solely based on the training set, our boot-
occurrence of an aviation incident. Fourth, thestrapping approach vyields a relative error reduc-
class distribution is very skewed: based on artion of 6.3% in F-measure for the minority classes.
analysis of our 1,333 annotated reports, 10 of the In sum, the contributions of our work are three-
14 categories can be considered minority classefpld. First, we introduce a new, challenging
which account for only 26% of the total num- text classification problem, cause identification
ber of labels associated with the reports. Finallyfrom aviation safety reports, to the NLP commu-
our cause identification task is domain-specificnity. Second, we created an annotated dataset for
involving the classification of documents that all cause identification that is made publicly available
belong to the aviation domain. for stimulating further research on this probfem

This paper focuses on improving the accuracy_Th'rd’ we introduce a bootstrapping algorithm for

of minority class prediction for cause identifica- improving t?e pred:::;uop (.)fmm?my classes in the
tion. Not surprisingly, when trained on a datasef’' ©5€NCE O a smafl training Set.

with a skewed class distribution, most supervisedS T?_e rezst of the paptiL's f;ginlzed aSSfO”t(_)WSé In
machine learning algorithms will exhibit good per- ection 2, we present the 14 Shapers. section 5 ex-

formance on the majority classes, but relativelyplams how we preprocess and annotate the reports.

poor performance on the minority classes. Umcor_Sectlons 4 and 5 describe the baseline approaches

tunately, achieving good accuracies on the minor§1nOI our bootstre_lpping glgorithr_n, respectively. We
ity classes is very important in our task of identify- !oresenj[ results in Section 6 d'SCL_JSS related work
ing shapers from aviation safety reports, where 1¢ Section 7, and conclude in Section 8.

qut of the 14 shapers_ are minority c_:Iqsses, as meny Shaping Factors

tioned above. Minority class prediction has been

tackled extensively in the machine learning liter-As mentioned in the introduction, the task of cause
ature, using methods that typically involve sam-identification involves labeling an incident report
pling and re-weighting of training instances, with with all the shaping factors that contributed to the
the goal of creating a less skewed class distributiomccurrence of the incident. Table 1 lists the 14
(e.g., Pazzani et al. (1994), Fawcett (1996), Kushaping factors, as well as a description of each
bat and Matwin (1997)). Such methods, howevershaper taken verbatim from Posse et al. (2005).
are unlikely to perform equally well for our cause As we can see, the 14 classes are not mutually ex-
identification task given our small labeled set, alusive. For instance, a lack of familiarity with
the minority class prediction problem is compli- equipment often implies a deficit in proficiency in
cated by the scarcity of labeled data. More specifits use, so the two shapers frequently co-occur. In
ically, given the scarcity of labeled data, manyaddition, while some classes cover a specific and
words that are potentially correlated with a shapewell-defined set of issues (e.qg., lllusion), some en-
(especially a minority shaper) may not appear incompass a relatively large range of situations. For
the training set, and the lack of such useful indi-instance, resource deficiency can include prob-
cators could hamper the acquisition of an accurateems with equipment, charts, or even aviation per-
classifier via supervised learning techniques. sonnel. Furthermore, ten shaping factors can be

We propose to address the problem of minoritycons'dered minority classes, as each of them ac-

o .. ~“count for less than 10% of the labels. Accurately
class prediction in the presence of a small trainin

. redicting minority classes is important in this do-
set by means of a bootstrapping approach, where _. :
: . . h main because, for example, the physical factors
we introduce an iterative algorithm to (1) use a

small set of labeled reports and a large set of unlar_mnorlty shaper is frequently associated with in-

: . ) idents involving near-mi tween aircraft.
beled reports to automatically identify words that® dents involving near-misses between aircra
are most relevant to the minority shaper under con- 3http://www.hit.utdallas.edw/persingg/ASRSdataset.html



Id | Shaping Factor | Description %
1 | Attitude Any indication of unprofessional or antagonistic attitude by a controllefgittttrew mem-| 2.4
ber, e.g., complacency or get-homeitis (in a hurry to get home).
2 | Communication | Interferences with communications in the cockpit such as noise, auditerference, radio 5.5
Environment frequency congestion, or language barrier.
3 | Duty Cycle A strong indication of an unusual working period, e.g., a long day,dlyery late at night,| 1.8
exceeding duty time regulations, having short and inadequate restigperio
4 | Familiarity A lack of factual knowledge, such as new to or unfamiliar with compainyod, or aircraft. | 3.2
5 | Hlusion Bright lights that cause something to blend in, black hole, white out, slopirgjtieetc. 0.1
6 | Other Anything else that could be a shaper, such as shift change, passiésaenfort, or disori-| 13.3
entation.
7 | Physical Unusual physical conditions that could impair flying or make things ditficu 16.0
Environment
8 | Physical Pilot ailment that could impair flying or make things more difficult, such asdéred, | 2.2
Factors drugged, incapacitated, suffering from vertigo, illness, dizzinegsoxig, nausea, loss of
sight or hearing.
9 | Preoccupation | A preoccupation, distraction, or division of attention that creates a defipgrformance,| 6.7
such as being preoccupied, busy (doing something else), or distracted
10 | Pressure Psychological pressure, such as feeling intimidated, pressuredingy low on fuel. 1.8
11 | Proficiency A general deficit in capabilities, such as inexperience, lack of trainioiggualified, or not| 14.4
current.
12 | Resource Absence, insufficient number, or poor quality of a resource, ssdverworked or unavail{ 30.0
Deficiency able controller, insufficient or out-of-date chart, malfunctioning or &ragive or missing
equipment.
13 | Taskload Indicators of a heavy workload or many tasks at once, such assaoded crew. 1.9
14 | Unexpected Something sudden and surprising that is not expected. 0.6

Table 1: Descriptions of shaping factor classe®.“%” column shows the percent of labels the shapers account for.

3 Dataset This sentence is grammatically incorrect (due to
the lack of a subject), and contains abbrevia-
We downloaded our corpus from the ASRS web+jons such as CLRED, APCH, and TWR. This
site®. The corpus consists of 140,599 incidentmakes it difficult for a non-aviation expert to un-
reports collected during the period from Januarygerstand. To improve readability (and hence fa-
1998 to December 2007. Each report is a fregjjitate the annotation process), we preprocess
text narrative that describes not Only Why an in'each report as follows. First, we expand the ab-
cident happened, but also what happened, where ireviations/acronyms with the help of an official
happened, how the reporter felt about the incidentjst of acronyms/abbreviations and their expanded
the reporter’s opinions of other people involved informs®. Second, though not as crucial as the first
the incident, and any other comments the reportestep, we heuristically restore the case of the words
cared to include. In other words, a lot of informa- by relying on an English lexicon: if a word ap-
tion in the report is irrelevant to (and thus compli- pears in the lexicon, we assume that it is not a
cates) the task of cause identification. proper name, and therefore convert it into lower-
case. After preprocessing, the example sentence
appears as

had been cleared for approach by ZOA

3.1 Preprocessing

Unlike newswire articles, at which many topic-

based text classification tasks are targeted, the and had been handed off to santa rosa

ASRS reports are informally written using various tower.

domain-specific abbreviations and acronyms, tenginally, to facilitate automatic analysis, we stem

to contain poor grammar, and have capitalizatioreach word in the narratives.

information removed, as illustrated in the follow- )

ing sentence taken from one of the reports. 3.2 Human Annotation
Next, we randomly picked 1,333 preprocessed re-

HAD BEEN CLRED FOR APCH BY ports and had two graduate students not affiliated

ZOA AND HAD BEEN HANDED OFF

5 . .
TO SANTA ROSA TWR. See http://akama.arc.nasa.gov/ASRSDBOnline/pdf/

ASRSDecode.pdf. In the very infrequently-occurring case
where the same abbreviation or acronym may have more

“http://asrs.arc.nasa.gov/ than expansion, we arbitrarily chose one of the possibilities.



'1d ;gt?sl g’?) ﬁ 52 53 E;‘ Eg mate goal is to evaluate the effectiveness of our
> [11989) [ 29 [29 [22 (16 | 23 bootstrapping algorithm, the baseline approaches
3 [38(29) |10 |5 6 9 8 only make use of small amounts of labeled data for
‘51 ;0( 0(52-)3) (1)1 (1)2 g 14 54 acquiring classifiers. More specifically, both base-

5 289'(21_7) “6 44 160 142 167 lines recasF the cause |_dent|f|cat|on problem as a
7 | 348(26.1)] 73 |63 |82 |59 | 71 set of 14 binary classification problems, one for

8 |48 (32-6) ) 11 114 |8 11 14 predicting each shaper. In the binary classification
9 | 145(10.9)[ 29 | 25 |38 |28 | 25 .

101380 12 10 4 - 5 prqb_lem_ for predicting shapes;, we crt_aate one

11 | 313(235)[ 65 |50 |74 |46 | 78 training instance from each document in the train-

12 | 652 (48.9)| 149 | 144 [ 125| 123 | 111 ing set, labeling the instance as positive if the doc-

134232 |7 |8 |8 |6 |13

4114 (1D) 3 3 3 3 > ument has; as one of its labels, and negative oth-

erwise. After creating training instances, we train
Table 2: Number of occurrences of each shaping binary classifier;, for pre_dlctlngsl-, employing
s features the top 50 unigrams that are selected

factor in the datasethe “Total” column shows the num- dina to inf i . ted h
ber of narratives labeled with each shaper and the percenta%a(raccor Ing to information gain computed over the

of narratives tagged with each shaper in the 1,333 labele am!ng data (see Yang and Ped?rsen (1,997) for
. e . _details). The SVM learning algorithm as imple-
narrative set. The “F” columns show the number narratives .
. . . mented in the LIBSVM software package (Chang
associated with each shaper in folds F1 - F5. . . o .
and Lin, 2001) is used for classifier training, ow-
5 6 ing to its robust performance on many text classi-
7 02 01 fication tasks.
In our first baseline, we set all the learning pa-
rameters to their default values. As noted before,

we divide the 1,333 annotated reports into five

with this research independently annotate thenfolds of roughly equal size, training the classifiers
with shaping factors, based solely on the definitiorPn four folds and applying them separately to the
of each shaper presented in Table 1. To measufémaining fold. Results are reported in terms of
inter-annotator agreement, we compute Cohen’Brecision (P), recall (R), and F-measure (F), which
Kappa (Carletta, 1996) from the two sets of anno&'® computed by aggregating over the 14 shapers
tations, obtaining a Kappa value of only 0.43. Thisas follows. Letip; be the number of test reports
not only suggests the difficulty of the cause identi-Correctly labeled as positive hy; p; be the total
fication task, but also reveals the vagueness inhePumber of test reports labeled as positive dpy

ent in the definition of the 14 shapers. As a resultandn; be the total number of test reports that be-
we had the two annotators re-examine each repol@nd t0s; according to the gold standard. Then,

for which there was a disagreement and reach an i toi S tp; 2PR
agreement on its final set of labels. Statistics ofthe * — Sopi = S yand F = PR
annotated dataset can be found in Table 2, where S )

the “Total” column shows the size of each of the Our second baseline is similar to the first, ex-
14 classes, expressed both as the number of rGept that we tune the classification threshold (CT)

ports that are labeled with a particular shaper an{p optimize F-measure. More specifically, recall

as a percent (in parenthesis). Since we will per:[hat LIBSVM trains a classifier that by default em-

form 5-fold cross validation in our experiments, ploys a CT of 0.5, thus classifying an instance as

we also show the number of reports labeled WitkPOSitive if and only if the probability that it be-

each shaper under the “F” columns for each folol_Iongs tq the positive class is_ at least 0.5. How-
To get a better idea of how many reports have mul&ver. this may not be the optimal threshold to use

tiple labels, we categorize the reports according t(."f;]S far_as perfcIerance 'f] concherneld, eSdPec_'S”Y for
the number of labels they contain in Table 3. the minority classes, where the class distribution

is skewed. This is the motivation behind tuning
the CT of each classifier. To ensure a fair compar-
ison with the first baseline, we do not employ ad-
In this section, we describe two baseline ap-ditional labeled data for parameter tuning; rather,
proaches to cause identification. Since our ultiwe reserve 25% of the available training data for

x (# Shapers)| 1 2 3 4
Percentage 536 332 103 2.

Table 3: Percentage of documents withabels.

R

4 Baseline Approaches



tuning, and use the remaining 75% for classifier Lr@n(P;N,U.k)

N . . Inputs:
acquisition. This amounts to using three folds P: positively labeled training examples of shaper
for training and one fold for development in each N negatively labeled training examples of shaper

cross validation experiment. Using the develop- ]g:rf‘uertn%fel:rgfggﬁgtpgm'geitse'rgt‘i:grr]zus

ment data, we tune the 14 Cjantly to optimize PW — )
overall F-measure. However, an exact solution to NW <0

. Lo . : for i=0tok —1do
this optimization problem is computationally ex- if |P| > |N| then

pensive. Consequently, we find a local maximum [P, PW) —
by employing a local search algorithm, which al- | ExpandTrainingSet(P, N, U, PW)
. .. else
ters one parameter gt a time to optlmlz_e F-measure (N, NW]| o
by holding the remaining parameters fixed. ExpandTrainingSet(N, P,U, NW)
end if

end for

5 Our Bootstrapping Algorithm

ExpandTrainingSet(A, B,U, W)
One of the potential weaknesses of the two base- Inputs:

. . . . . . A, B,U: narrative sets
lines described in the previous section is that the W unigram feature set

classifiers are trained on only a small amount of for j =1 to 4do

labeled data. This could have an adverse effect ¢ — argmaxqw <1og(%))
on the accuracy of the resulting classifiers, espe-  /; ¢(¢, x): number of narratives it containingt
cially those for the minority classes. The situation W — Wu{t}

i end for
is somewhat aggravated by the fact that we are return [A U S(W, U), W]

adopting a one-versus-all scheme for generating // s(w,U): narratives in containing> 3 words inW’
training instances for a particular shaper, which,

together with the small amount of labeled data, im-

plies that only a couple of positive instances may Figure 1: Our bootstrapping algorithm.
be available for training the classifier for a minor-

ity class. To alleviate the data scarcity problem

and improve the accuracy of the classifiers, Weof bootstrapping iterations. In addition, the algo-

propose in this section a bootstrapping algorithmmhm uses two variables?W and NW, to store

that automatically augments a training set by eX:[he sets of high-quality indicators for the positive

ploiting a large amount of unlabeled data. The bajnstances and the negative instances, respectively,

sic idea behind the algorithm is to iteratively iden-that are found during the bootstrapping process.

tify words that are high-quality indicators of the | Nextr,] \'/;/e btggln outk bootsgragﬁgg |t(]a\rfat(|jons.
positive or negative examples, and then automati-' €ach lteration, we expand €l or /v, de-

cally label unlabeled documents that contain asufpendlng on their rela'tlve. sizes. In prder to keep
ficient number of such indicators. the two sets as close in size as possible, we choose
. . - to expand the smaller of the two sets. After that,
Our bootstrapping algorithm, shown in Figure

1, aims to augment the set of positive and negyve execute the functioBxpandTrainingSeb ex-

. o . and the selected set. Without loss of general-
ative training instances for a given shaper. Th : .
: : : ) ity, assume that’ is chosen for expansion. To
main function, Train, takes as input four argu-

ments. The first two argument®, and N, are the do this,ExpandTrainingSetelects four words that

" o . seem much more likely to appear i than in
positive and negative instances, respectively, 98N%, «om the set of candidate wofls To select
erated by the one-versus-one scheme from the in{-

: L . ) . hese words, we calculate the log likelihood ratio
tial training set, as described in the previous sec-

C(t,P) -
tion. The third argumenty/, is the unlabeled set o8(¢r.n+1) for each candidate word where

of documents, which consists of all but the doc-C'(¢; P) is the number of narratives iit that con-
uments in the training set. In particuldr, con-  t@int andC(¢, N) similarly is the number of nar-
tains the documents in the development and tedptives in XV that containt. If this ratio is large,
sets. Hence, we are essentially assuming acce€ POSit that is a good indicator of. Note that
to the test documents (but not their labels) durincrémenting the count in the denominator by one

ing the training process, as in a transductive learn- ®A candidate word is a word that appears in the training

ing setting. The last argumert, is the number set (P U N) at least four times.




has a smoothing effect: it avoids selecting wordsn the next section, we run the bootstrapping algo-
that appears infrequently iR and not at all invV.  rithm for up to five iterations only, as the quality
There is a reason for selecting multiple wordsof the bootstrapped data deteriorates fairly rapidly.
(rather than just one WOfd) in each bootstrap:rhe exact value of will be determined automati-
ping iteration: we want to prevent the algorithm cally using development data, as discussed below.
from selecting words that are too specific to one After bootstrapping, the augmented training
subcategory of a shaping factor. For exampledata can be used in combination with any of the
shaping factor 7 (Physical Environment) is com-two baseline approaches to acquire a classifier for
posed largely of incidents influenced by weatheiddentifying a particular shaper. Whichever base-
phenomena. In one experiment, we tried selectine is used, we need to reserve one of the five
ing only one word per bootstrapping iteration.folds to tune the parametér in our cross vali-
For shaper 7, the first word added to PW waglation experiments. In particular, if the second
“snow”. Upon the next iteration, the algorithm baseline is used, we will tun€7" and & jointly
added “plow” to PW. While “plow” may itself be 0on the development data using the local search al-
indicative of shaper 7, we believe its selection waglorithm described previously, where we adjust the
due to the recent addition to P of a large number o¥alues of bothC'T" andk for one of the 14 classi-
narratives containing “snow”. Hence, by selectingfiers in each step of the search process to optimize
four words per iteration, we are forcing the algo-the overall F-measure score.
rithm to “branch out” among these subcategories.

After adding the selected words BW, we
augment?” with all the unlabeled documents con-6.1  Baseline Systems

taining at least three words frofR1V. The rea- . : .
Since our evaluation centers on the question of

son for imposing the "at least three reqUIrementhow effective our bootstrapping algorithm is in ex-

is precision: we want to ensure, with a reason-ploiting unlabeled documents to improve classifier
able level of confidence, that the unlabeled doc-

. ) erformance, our two baselines only employ the
uments chosen for augmentirig should indeed P y employ

. ) . available labeled documents to train the classifiers.
be labeled with the shaper under consideration, as ) . .
Recall that our first baseline, which we call

incorrectly labeled documents would contaminate

the labeled data, thus accelerating the deterioratiogo'5 (due to its being a baseline with a CT of
.5), employs default values for all of the learn-

of the quality of the automatically labeled data in. )
o . ng parameters. Micro-averaged 5-fold cross val-
subsequent bootstrapping iterations and adverse|

. o . “Idation results of this baseline for all 14 shapers
affecting the accuracy of the classifier trained on it . L
. . and for just 10 minority classes (due to our focus
(Pierce and Cardie, 2001). . . L L
: , on improving minority class prediction) are ex-

The above procedure is repeated in each book essed as percentages in terms of precision (P),
strapping iteration. As mentioned above, N ocq)| (R), and F-measure (F) in the first row of
is smaller in size tharP, we will expandN in- 1516 4. As we can see, the baseline achieves
stead, adding t&VIV the four words that are the ;1 F_measure of 45.4 (14 shapers) and 35.4 (10
strongest indicators of a narrative be_ing a negativghapers)_ Comparing these two results, the higher
example of the shaper under consideration, ang. measure achieved using all 14 shapers can be at-
augmentingV with those unlabeled narratives that i ted primarily to improvements in recall. This
contain at least three words fromiv. should not be surprising: as mentioned above, the

For a typical minority shaper, the algorithm ex- number of positive instances created for a minor-
pands P the first two iterations. On the second itity class could be small, thus causing the resulting
eration, P is augmented with the narratives in the|assifier to be biased towards classifying a docu-
unlabeled set containing any 3 of the 8 words inment as negative.
PW. Given the unlabeled set’'s ample size, these Instead of employing a CT value of 0.5, our sec-
documents can easily number in the hundreds, tipond baseline 3.;, tunes the CT using one of the
ping the balance betweet’| and |N| so that in  training folds and simply trains a classifier on the
the next iteration| V| > |P|. remaining three folds. For parameter tuning, we

The number of bootstrapping iterations is con-tested CTs of 0.0, 0.05,.., 1.0. Results of this
trolled by the input parametdr. As we will see baseline are shown in row 2 of Table 4. In com-

Evaluation



All' 14 Classes 10 Minority Classes i i 0
System [P TR T F P TR [F represents a relative error reduction of 6.3%, but

Bos 670 344 (454 1683 239 [ 354 drops by 0.1% for 14 shapers. Overall, these re-
Bt 4741592 52714781343 ]399 sults suggest that when the CT is tunable, train-
Eos 609 | 40.4 | 486 || 53.2 | 35.3 | 42.4 i i ori

e o et ing set expansion helps the minority classes but

hurts the remaining classes. A closer look at the
results reveals that the 0.1% F-measure drop is due
to a large drop in recall accompanied by a smaller
gain in precision. In other words, for the four
parison to the first baseline, we see that F‘measurr?on-minority classes, the benefits obtained from
improves considerably by 7.4% and 4.5% for 14ysing the bootstrapped documents can also be ob-
shapers and 10 shapéreespectively, which illus-  tained by simply adjusting the CT. This could be
trates the importance of employing the right CT attriputed to the fact that a decent classifier can be
for the cause identification task. trained using only the hand-labeled training exam-
ples for these four shapers, and as a result, the au-
tomatically labeled examples either provide very
Next, we evaluate the effectiveness of our bootiittle new knowledge or are too noisy to be useful.
strapping algorithm in improving classifier per- On the other hand, for the 10 minority classes, the
formance. More specifically, we apply the two 3.8% gain in F-measure can be attributed to a si-
baselines separately to the augmented training setultaneous rise in recall and precision. Note that
produced by our bootstrapping algorithm. Whensuch gain cannot possibly be obtained by simply
combining our bootstrapping algorithm with the adjusting the CT, since adjusting the CT always
first baseline, we produce a system that we caltesults in higher recall and lower precision or vice
Ey5 (due to its being trained on thexpanded versa. Overall, the simultaneous rise in recall and
training set with a CT of 0.5) Ey 5 has only one precision implies that the bootstrapped documents
tunable parameter; (i.e., the number of boot- have provided useful knowledge, particularly in
strapping iterations), whose allowable values arg¢he form of positive examples, for the classifiers.
0, 1,..., 5. When our algorithm is used in com- Even though the bootstrapped documents are nois-
bination with the second baseline, we produce anily labeled, they can still be used to improve the
other systemFE,;, which has botht and the CT classifiers, as the set of initially labeled positive
as its parameters. The allowable values of thesexamples for the minority classes is too small.
parameters, which are to be tuned jointly, are the
same as those employed By; and Ej 5. 6.3 Additional Analyses

Results of £y 5 are shown in row 3 of Table
4. In comparison tdB, 5, we see that F-measure Quality of the bootstrapped data. Since the
increases by 3.2% and 7.0% for 14 shapers andootstrapped documents are noisily labeled, a nat-
10 shapers, respectively. Such increases can bgal question is: how noisy are they? To answer
attributed to less imbalanced recall and precisiorthis question, we need to label all of the boot-
values, as a result of a large gain in recall accomstrapped documents. To get a sense of the accu-
panied by a roughly equal drop in precision. Theséacy of the bootstrapped documents without fur-
results are consistent with our intuition: recall canther manual labeling, recall that our experimental
be improved with a larger training set, but preci-Setup resembles a transductive setting where the
sion can be hampered when learning from noistest documents are part of the unlabeled data, and
ily labeled data. Overall, these results suggest th&tonsequently, some of them may have been auto-
learning from the augmented training set is usefulmatically labeled by the bootstrapping algorithm.
especially for the minority classes. In fact, 137 documents in the five test folds were

Results ofE,; are shown in row 4 of Table 4. automatically labeled in the 14-shapir; exper-
In comparison toB,;, we see mixed results: F- iments, and 69 automatically labeled documents
measure increases by 3.8% for 10 shapers (whictyere similarity obtained from the 10-shapg,
experiments. For 14 shapers, the accuracies of
"It is important to note that the parameters are optimizedthe positively and negatively labeled documents
separately for each pair of 14-shaper and 10-shaper exper—re 74.6% and 97.1%, respectively, and the cor-

iments in this paper, and that the 10-shaper results are n& s
simply extracted from the 14-shaper experiments. responding numbers for 10 shapers are 43.2% and

Table 4: 5-fold cross validation results.

6.2 Our Approach



Shaping Factor Positive Expanders Negative Expanders

Familiarity unfamiliar, Tayout, unfamilarity, rely

Physical Environment | cloud, snow, ice, wind

Physical Factors fatigue, tire, night, rest, hotel, awake, sleep, s|ckeclare, emergency, advisory, separation

Preoccupation distract, preoccupied, awareness, situatiomadleclare, ice snow, crash, fire, rescue, anti,
task, interrupt, focus, eye, configure, sleep smoke

Pressure bad, decision, extend, fuel, calculate, reseryve,
diversion, alternate

Table 5: Example positive and negative expansion words collectéd tpr selected shaping factors.

81.3%. These numbers suggest that negative exiass prediction, the work most related to ours in-
amples can be acquired with high accuracies, butolves one or more of these topics.

the same is not true for positive examples. Never- Guzman-Cabrera et al. (2007) address the
theless, learning the 10 shapers from the not-sqyroblem of class skewness in text classification.
accurately-labeled positive examples still allowsgpecifically, they first under-sample the majority
us to outperform the corresponding baseline.  classes, and then bootstrap the classifier trained
Analysis of the expanders. To get an idea of on the under-sampled data using unlabeled doc-
whether the words acquired during the bootstrapuments collected from the Web.
ping process (hencefortexpanders make intu- Nigam et al. (2000) propose an iterative semi-
itive sense, we show in Table 5 example positivesupervised method that employs the EM algorithm
and negative expanders obtained for five shapingh combination with the naive Bayes generative
factors from theF,; experiments. As we can see, model to combine a small set of labeled docu-
many of the positive expanders are intuitively ob-ments and a large set of unlabeled documents. Mc-
vious. We might, however, wonder about the con-Callum and Nigam (1999) suggest that the ini-
nection between, for example, the shaper Familtial labeled examples can be obtained using a list
iarity and the word “rely”, or between the shaperof keywords rather than through annotated data,
Pressure and the word “extend”. We suspect thafielding an unsupervised algorithm.
the bootstrapping algorithm is likely to make poor  Simijlar bootstrapping methods are applicable
word selections particularly in the cases of the miytside text classification as well. One of the
nority classes, where the positively labeled trainyqst notable examples is Yarowsky’s (1995) boot-
ing data used to select expansion words is MOrgtrapping algorithm for word sense disambigua-
sparse. As suggested earlier, poor word choiCgon. Beginning with a list of unlabeled contexts
early in the algorithm is likely to cause even poorersrrounding a word to be disambiguated and a list
word choice later on. of seed words for each possible sense, the algo-
On the other hand, while none of the negativeithm iteratively uses the seeds to label a training
expanders seem directly meaningful in relation toset from the unlabeled contexts, and then uses the

the shaper for which they were selected, some ofaining set to identify more seed words.
them do appear to be related to other phenomena

that may be negatively correlated with the shape
For instance, the words “snow” and “ice” were

selected as negative expanders for Preoccupati% h introduced bl identi
and also as positive expanders for Physical Envi-, € Nave infroduced a new problem, cause identl-
ication from aviation safety reports, to the NLP

ronment. While these two shapers are only slightl);

negatively correlated, it is possible that Preoccupommun'ty' We recast it as a multi-class, multi-

pation may be strongly negatively correlated Withlabel t?Xt classification t‘?ISk’ an_d presented a pOOt_
the subset of Physical Environment incidents in_strapplng algorlthm for improving the predlctlo_n
volving cold weather. pf minority cIas;es in the presence of a small train-
ing set. Experimental results show that our algo-
7 Related Work rithm yields a relative error reduction of 6.3% in
F-measure over a purely supervised baseline when
Since we (1) recast cause identification as a texapplied to the minority classes. By making our
classification task and (2) proposed a bootstrapannotated dataset publicly available, we hope to

ping approach that targets at improving minoritystimulate research in this challenging problem.

I .
8 Conclusions
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